Alteration of type-G wellbore cement during carbon sequestration: An experimental case study

Marcus Wigand, J. William Carey, W. Kirk Hollis, John P. Kaszuba

Los Alamos National Laboratory

LA-UR-071358

Objectives for this study

- Experimental study of the wellbore class-G cementformation water-SCCO₂ system under in-situ reservoir conditions during carbon sequestration
- ➤ How does reaction with SCCO₂ affect the geophysical properties (e.g. porosity and permeability) and integrity of the cement?
- Can Alkali-Carbonate Reactivity (ACR) processes occur in wellbore cement during carbon sequestration?

Wellbore integrity

Potential risks:

- Wellbore flow
- Cement interactions with supercritical CO₂ and/or acid gases
- Cement interaction with formation brine

Casing Design in a Typical Gas Well (Not to Scale)

After www.envisioncreativegroup.com

Experimental Setup

EXPERIMENTAL SETUP:

Hassler vessel
Injection pressure 2880 psi
Pressure gradient 40 psi
Confining pressure 3800 psi
Temperature 54°C

PROCEDURE:

Saturation with 1.65 M brine over 31 days Injection of SCCO₂ over 141 days

Mineralogy

	CLASS-G	U1-E4-CZ1	U1-E4-CZ2	U1-E4-CZ6
	CEMENT		то	
			U1-E4-CZ5	
Ca ₅ Al ₂ (SiO ₄) ₃ (OH) ₄	Х	Х	Х	Х
Ca(OH) ₂	X	X	X	Х
Ca ₃ Al ₂ (OH) ₁₂	X	X	X	Х
Ca _{1.5} SiO _{3.5} * H ₂ O	Х	Х	Х	Х
Ca ₂ (Al,Fe) ₂ O ₅	Х	X	X	Х
Ca ₃ SiO ₅	x			
AI(OH) ₃	Х			
Ca ₄ Al ₂ O ₆ Cl ₂ * 10 H ₂ O		X	Х	Х
Mg(OH) ₂				X
Calcite	Х	Х	Х	Х
Aragonite				Х
Ca Mg(CO ₃) ₂				Х

Fluid Chemistry

Brine Composition:

рН	6.61
HCO ₃ -	1181 ppm
CI ⁻	53493 ppm
SO ₄ ²⁻	507 ppm
Na⁺	32525 ppm
Ca ²⁺	4284 ppm
Mg ²⁺	724 ppm
Ionic strength	1.651
TDS	88953 mg/kg

Whole-Rock Geochemistry

Alkali-Carbonate Reactivity Products at the opposite side of the core

XRD RESULTS:

CEMENT PHASES	wt%
Portlandite	15
Brownmillerite	9
Hydrocalumite	7
Katoite	6
Ca ₂ SiO ₄	7
Ca ₃ SiO ₅	4
Calcite	6
Aragonite	2
Brucite	4
Amorphous	40

ACR-TYPE REACTION ("DEDOLOMITIZATION"):

 $CaMg(CO_3)_2 + Ca(OH)_2 \longrightarrow Mg(OH)_2 + 2CaCO_3$

Alkali-Carbonate Reactivity

Results of ACR:

- Expansion of structural members due to differential volume change
- Formation of fractures and loss of bond between aggregate particles and cement paste
- ➤ Brucite and Ca-rich deposits in cracks, voids, and paste

Stable Isotopes as an Indicator for the Carbonation Process of the Wellbore Cement

Geochemical Modeling

Changes in Cement Texture

- Changes in the texture of the cement but no formation of an orange-colored carbonation zone
- Increase in weight by 7.13% and decrease in porosity by 11.2%

Conclusions

- Not every Portland-based wellbore cement shows a complete carbonation during the reaction with SCCO₂ & brine
- Portlandite and C-S-H present throughout the core
- No formation of an orange alteration zone
- CO₂ does not appear to have penetrated through the length of the core (2.39 cm) during the 172 day experiment
- ACR-like processes can occur during carbon sequestration processes

Acknowledgements

SPECIAL THANKS TO:

Toti Larson

Melissa Fittipaldo

Dale Counce

Ren-Guan Duan

Steve Chipera

Emily Kluk

Research funded by Los Alamos National Laboratory and by the US Department of Energy

Thank you very much for your attention!

